

RICH DETECTOR FOR THE EIC'S FORWARD REGION PARTICLE IDENTIFICATION

M. Contalbrigo, M. Demarteau, J.M. Durham, H. Hecke(co-PI), J. Huang, M. Liu, P. Rossi, Y. Qiang(co-PI), R. Wagner, C. Zorn

Overview

- Motivation
- Detector Concepts and Key Technologies
 - Dual radiator RICH
 - Modular RICH
 - Aerogel
 - MCP-based LAPPD
 - GEM-based readout
- Proposed RICH R&D Project
 - Tasks and milestones
 - Budget
- Summary

EIC PID Requirements

- Very rich physics program:
 - Nucleon tomography and spin structure
 - Quark hadronization
 - Spectroscopy
 - Many more ...

- Dedicated EIC machine and spectrometer
 - Hermetic detector system
 - Large momentum range
 - Multi-particle detection in final states

Hadron Identification in SIDIS

- Semi-Inclusive Deep-Inelastic Scattering (SIDIS)
 - Golden channel to study spin-orbital correlation through transverse momentum-dependent parton distributions (TMDs)
- K/π identification in Forward (Backward) region:
 - 0 15 GeV, 4-σ separation

Choice of Technologies

- Multiple technologies are needed
- 0 5 GeV: Time-of-flight
- 5 10 GeV: Aerogel RICH (Used in HERMES, LHCb, AMS, BELLE ...)
- 10 15 GeV: heavy gas
 - C_4F_{10}/C_4F_8O RICH
 - Good light yield
 - CF₄ threshold counter
 - Need Aerogel RICH to veto protons
 - Can cover much higher range as RICH

General geometry constraint: ~150 cm length

Focusing RICH

- Aerogel RICH: 3 10 GeV
- C₄F₁₀: 10 20 GeV
- Focused by a Fresnel lens
- Readout resolution: < 2 mm

Proximity Focusing

- Aerogel RICH: 3 10 GeV
- CF₄ threshold counter: 8 17
 GeV
 - Signals from readout window will be mixed with photons from CF₄
- Readout resolution: < 4 mm

Dual Radiator Concept

Modular Concept

- Modular design for maximum flexibility
 - Very compact design, size of a shoe box
 - Can be tiled to cover different geometries, used in various experiments
- Focusing aerogel RICH
 - Covers 3 10 GeV
 - Needs to be paired with additional gas RICH detector
 - Focusing Fresnel lens
 - Concentric rings for parallel tracks
 - Readout resolution: < 0.5 mm

Status of Aerogel Development

Transmittance: $T=e^{-t(1/\Lambda_{abs}+1/\Lambda_{sc})}$ Scattering length: $\Lambda_{sc}=\lambda^4/C$

- Aerogel strongly scatters UV lights
- Major manufactures
- Novosibirsk, Russia
- Japan Fine Ceramics Center, Japan
- Aspen, US
- Some comparisons available (CLAS12 etc.)
- Slowly being improved

Micro-Channel Plate-based LAPPD

LAPPD: Large Area Picosecond Photo-Detector

20 × 20 cm² MCP Spacer Sidewall Anode

Compact size, good time resolution, expect good tolerance to magnetic field

ALD Micro-Channel Plate

- Conventional Pb-glass MCP
 - Single material, three functions: pore, Pb-glass resistive layer, Pb-Oxide emissive layer
 - Higher cost, fragile, limited lifetime
- MCP produced with Atomic Layer Deposition (ALD): more freedom for optimization
 - Glass substrate with pores
 - Tuned resistive layer provides current for electric field
 - Specific emissive layer (Al₂O₃) provides secondary electron emission
- Good performance with lower cost
 - Gain > 10⁷ for pair MCPs
 - Longer lifetime >> 5 C/cm²

LAPPD Readout and Status

Transmission line readout

- 5 mm silver strips sampled on both ends with 10 GS/s
- Lower channel count, can be further chained
- < 5 mm spatial resolution

Three 20×20 cm² readout board chained

Status of the LAPPD development

- Funded by DOE since 2009
- Individual components proved working
- A working demountable prototype using Al photocathode
- First ceramic prototype recently assembled with bi-alkali photocathode
- Small glass body samples available this year

Bonus TOF feature from LAPPD

- Excellent time resolution of LAPPD provide additional PID power through time-of-flight
 - Use Cherenkov light generated in the entrance window
 - Single photon time resolution < 44 ps

GEM-based Readout

- Csl-coated GEM detector successfully used in PHENIX's hadron blinded-detector (HBD)
 - Csl only sensitive to UV light, not suitable for aerogel
 - Bi-alkali coating possible (Breskin et al.), however very sensitive to operating gas
 - Development needed for optimal combination of bi-alkali and gas mixture

Goal of the Proposed Project

- Final goal of the three-year project
 - Determine the optimal detector technology and finish the conceptual design of the RICH detector
- Five parallel tasks
 - Detector simulation and conceptual design (JLab/LANL/BNL)
 - Characterize LAPPDs (JLab)
 - Improvement of LAPPD (ANL/JLab)
 - Study of GEM-based readout (LANL)
 - Characterize aerogel radiators (INFN/JLab/LANL)
- Further prototyping is anticipated given the success of the project

Detector Simulation and Design

Goals

- Simulation of detector performance in the EIC environment
- Provide requirements on detector components, e.g. rate performance, aerogel quality etc.
- Optimize optics and detector design
- Determine readout scheme: strip or pixel, maximum size
- Develop reconstruction software

Resources

- Postdoctoral researchers from JLab and LANL
- Extended from existing EIC simulation codes/event generators

Characterize LAPPDs

- Goal: characterize the MCP-based LAPPD with the needs of the EIC
 - Photon detection efficiency
 - Rate capability
 - Time and position resolution
 - Background noise level
 - Neutron and EM radiation hardness
 - Sensitivity to magnetic field
 - Lifetime

Resources

- Postdoctoral researcher from JLab
- Existing testing facilities at JLab
 - PMT test stands, picosecond pulsed laser source, EM and neutron irradiation, 5-T magnet, parasitic electron beam
- Additional Neutron and proton irradiation facilities at LANL

Improvement of LAPPD

- Goal: improve and balance the performance of LAPPDs towards the needs of the EIC
 - High rate capability
 - Tolerance to magnetic field
 - Thinner glass window (now 2.75 mm) to reduce background hits
 - Optimize existing readout for high multiplicity
 - Alternative readout option if needed
- Resources
 - Postdoctoral researchers from ANL and JLab
 - Existing LAPPD R&D facilities at ANL
 - photocathode coating station, atomic layer deposition station, LAPPD assembling chamber and testing labs

Study of GEM-Based Readout

Goals

- Optimize the combination of photocathode coating and gas mixture of a GEM detector to allow detection of photons with wavelength > 300 nm
- Develop a suitable readout pattern through simulations and bench tests

Resources

- Postdoctoral researcher from LANL
- Expertise in Csl-coated GEM detector
- LANL will build a small vacuum chamber for bialkali photocathode deposition and quantum-efficiency measurements

Characterize Aerogel Radiator

- Goal: working closely with different vendors, Novosibirsk, Matsushita-Panasonic, Aspen etc. to choose the optimal aerogel tiles for the EIC RICH detector
 - Measurement of transmittance, absorption length and scattering length
 - Measurements of refractive index and chromatic dispersion using the prism method
 - Refractive index mapping with gradient method
 - High precision mapping of the tiles thickness

Resources:

- Postdoctoral researcher from Jefferson Lab
- Clean room at Jefferson Lab
- Will purchase a spectrophotometer as light source
- Expertise from INFN, JLab and LANL

Budget

ltem	Cost		
	Year 1	Year 2	Year 3
Jefferson Lab			
M&S – LAPPD testing	\$10,000	\$10,000	\$10,000
Equipment – LAPPD testing	\$20,000	\$0	\$0
Labor – Postdoc (0.7 FTE)	\$70,000	\$70,000	\$70,000
Travel	\$10,000	\$10,000	\$10,000
Subtotal	\$110,000	\$90,000	\$90,000
Los Alamos National Lab			
GEM detector kits (5×\$3200)	\$16,000	\$0	\$0
CERN RD51 SRS Readout System	\$3,000	\$0	\$0
Components for deposition chamber	\$30,000	\$20,000	\$20,000
Labor – Post doc (0.4 – 0.5 FTE)	\$60,000	\$80,000	\$80,000
M&S and Travel	\$20,000	\$20,000	\$20,000
Subtotal	\$129,000	\$120,000	\$120,000
Argonne National Lab			
M&S – LAPPD fabrication	\$15,000	\$15,000	\$15,000
Labor – LAPPD fabrication and R&D	\$50,000	\$50,000	\$50,000
Travel	\$5,000	\$5,000	\$5,000
Subtotal	\$70,000	\$70,000	\$70,000
INFN			
M&S – Aerogel Testing	\$10,000	\$10,000	\$10,000
Equipment – Aerogel Testing	\$30,000	\$0	\$0
Travel	\$10,000	\$10,000	\$10,000
Subtotal	\$50,000	\$20,000	\$20,000
Grand Total	\$359,000	\$300,000	\$300,000

Summary

- An aerogel-based RICH detector is proposed to provide necessary hadron identification in the EIC's forward region
- A three-year joint effort is planned to investigate various technologies, find optimal solution and provide a conceptual design for such a detector
 - Two design options will be evaluated: dual-radiator RICH for maximum coverage and modular aerogel RICH for maximum flexibility
 - Two economical novel readout options will be studied: MCP-based LAPPD and GEM-based readout
- The success of the project will become the base of the second phase: development of a proof-of-principle prototype

BACKUP SLIDES

Solution to Forward PID

- Multiple radiators are needed to cover the broad kinematic range
 - TOF + high-n radiator (aerogel) + low-n radiator (gas)
 - Can we combine them into one detector?

Background rate in ALD-MCP

- Background rate of a 33 mm ALD-MCP with 20 µm pores and 1.2 mm thickness measured at 7×106 gain
 - 33 mm diameter
 - 20 µm pores, 1.2 mm thickness
 - 0.84 counts/cm²/s,
 comparable with comic ray
- More test needed for full assembly with photocathode

Background hits over 3000 s

Magnetic Field Tolerance of MCPs

Typical field response of commercial MCPs

Gain of MCP with different rates

Measurement of an older 10 µm pore ALD-MCP with MgO emission layer

Performance of Hamamatsu MCP-PMTs 10^6 gain $\rightarrow 300$ kHz/cm²

Lifetime of ALD-MCPs

- Significant improvement with preconditioning over traditional MCPs
 - Possibility due to cleaner glass substrate with much less contamination to create ion backflow

Lifetime of an older ALD-MCP pair (20 µm pore, MgO emission layer, 60:1 L/d, 8° bias) compared with conventional MCPs

Estimated Final Detector Cost

- Total Coverage ~ 10 m²
- Dual-radiator RICH using LAPPD ~ \$5M
 - Aerogel ~ \$1M
 - Gas system ~ \$1M
 - LAPPD ~ \$1M (MaPMT ~ \$10M)
 - Electronics ~ \$1M (MaPMT ~ \$3.5M)
 - Frame and MISC ~ \$1M
- Modular RICH ~ \$3M
 - Aerogel ~ \$1M
 - GEM ~ \$0.6M
 - Electronics ~ \$0.6M
 - Frame, Lens and MISC ~ \$1M

Other Readout Options

Multi-anode MPTs

- Well known technology, will be used in CLAS12 RICH and LHCb
- As small as 3 mm pixel sizes
- Sensitive to visible light
- Low noise
- Moderate resistance to magnetic field
- Expensive (~\$1M for 1 m² sensor only)

Silicon Photo-Multipliers

- Relative new technology
- 3 mm pixels available
- Sensitive to visible light
- Resistant to strong magnetic field
- High dark rate, needs to be cooled
- Low neutron radiation tolerance
- Expensive (~\$2 M for 1 m² sensor only)

Characterizating Aerogel Tiles

Thickness mapping

Spectrophotometer as light source

$$\delta = \alpha - \beta + \arcsin\left\{n \cdot \sin\left[\beta - \arcsin\left(\frac{\sin\alpha}{n}\right)\right]\right\}$$

Prism method for chromatic dispersion

Gradient method for uniformity

SiPM Test Setup

SiPM Test Setup

Liquid Light Guide

Temperature Sensor

Blue LED

SiPM and Preamplifier

Adjustable Neutral Filter: Dark, 1%, 2%, 4% and 6%

Collimating Lens and 470±10 nm Filter

LAPPD's 8" Photocathode

Argonne National Lab

- Using Burle PMT processing station with home-made photocathode deposition chamber
- 7"×7" flat K₂CsSb photocathode was produced
- Max QE: 22% (350 nm, average: 16%)

UC Berkeley

- Deposited Na₂KSb photocathode on 8" windows
- 25% QE (350nm) with good uniformity (15%) and stability

Ring Images in Modular Design

Dual-Radiator RICH Simulation

Simulation in GlueX Environment

Cherenkov hits from 3 cm aerogel

Cherenkov hits from 40 cm C_4F_{10} and 0.5 mm glass